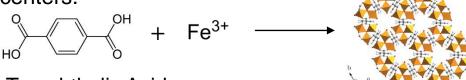


Monitoring Drug Loading and Releasing in MIL-88B(Fe) Films on Modified Gold Substrates using Surface Plasmon Methods

CALIFORNIA STATE UNIVERSITY LONG BEACH

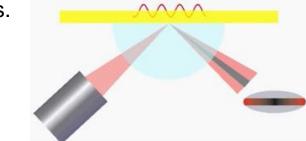
Trenton Nguyen, Hao Pham and Dr. Fangyuan Tian Department of Biomedical Engineering and Department of Chemistry


ABSTRACT

Coronary Artery disease (CAD) is a major leading cause of death in the United States. Characterized by plaque narrowing the blood vessel, people with CAD have a higher chance of experiencing heart attack and stroke. Our research studies the effects of using MIL-88B, a porous structure of the class: Metal Organic Framework (MOF) as a porous inorganic coating on drug eluting stent (DES), to prevent CAD and minimize restenosis and thrombosis effects. MIL-88B was synthesized under a solvo-thermo method and used for UV-Vis to see drug delivery properties while implementation of MIL-88B on gold was used as a model to see the binding of Ibuprofen on MIL-88B as well as the binding of 16-Mercaptohexadecanoic acid (MHDA) on gold for SPR experiments. Our results confirmed the successful preparation of ibuprofen loaded MIL-88B film on MHDA functionalized gold substrate.

METHODS

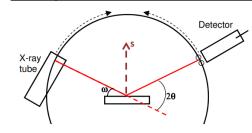
Synthesis:


MIL-88B is synthesized by mixing a set amount of metal, Iron (III) Chloride with ligand, Terephthalic acid in DMF solvent. After heating for about 12 hours, a network of metal framework developed with porous centers.

Terephthalic Acid

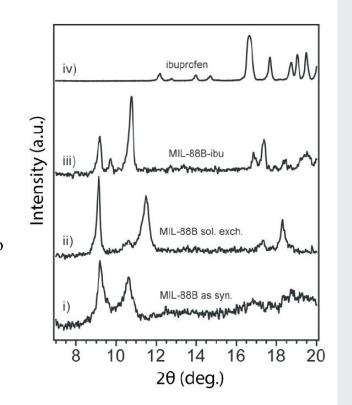
Surface Plasmon Resonance (SPR)

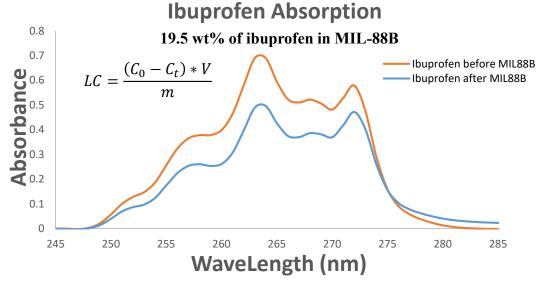
SPR allows real-time, label free detection of biomolecular interactions.


Self Assembled Monolayer (SAM):

The formation of MHDA SAM on clean gold surface was monitored using SPR. Similarly, the binding of MIL-88B to MHDA along with ibuprofen loading was studied using SPR.

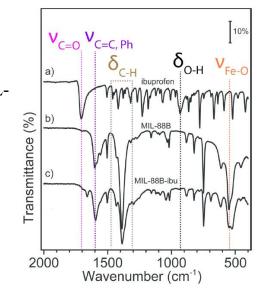
RESULTS


X-ray Powder Diffraction (XRD)



PXRD patterns of MIL-88B at the condition of i) as-synthesized, ii) after solvent exchange iii) after loading with ibuprofen, in comparison to the PXRD patterns of

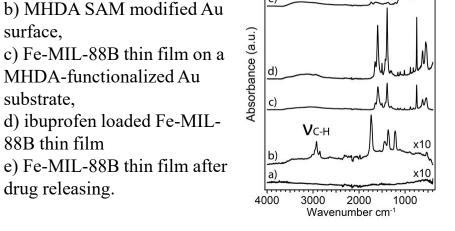
iv) pure ibuprofen.


UV-Vis Spectroscopy

Ibuprofen/Hexane Standard Curve y = 0.8865x $R^2 = 0.9983$ 1.40 0.80 Concentration

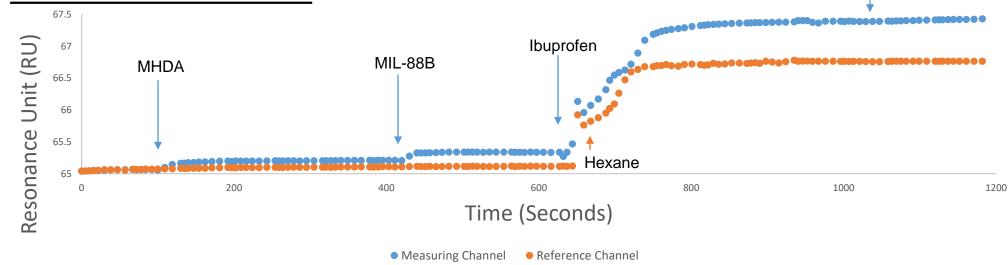
Infrared Spectroscopy

ATR-IR spectra of a) pure ibuprofen, b) pristine Fe-MIL-88B, c) ibuprofen loaded Fe-MIL-88B

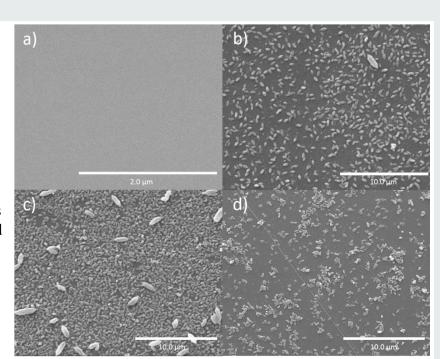


FTIR spectra of a) Au surface, b) MHDA SAM modified Au surface, c) Fe-MIL-88B thin film on a MHDA-functionalized Au substrate, d) ibuprofen loaded Fe-MIL-

88B thin film


drug releasing.

յուն են ուն են


Hexane

Surface Plasmon Resonance

Scanning **Electron** Microscopy (SEM)

SEM images of a) clean gold b) MIL-88B crystals on MHDA-modified Au surface c) ibuprofen loaded MIL-88B crystals d) MIL-88B after releasing ibuprofen in PBS.

CONCLUSION

We confirmed the encapsulation of ibuprofen within the porous MIL-88B structures by optical spectroscopic studies. The drug loading capacity of the testing Fe-MIL material was found to be about 19.5 wt% for ibuprofen delivery. SPR results showed successful binding of a MHDA SAM on clean gold surface within a few minutes. Additionally, we prepared a uniform MIL-88B film on a MHDA modified Au surface via covalent bonding. The successful encapsulation of ibuprofen in MIL-88B was confirmed by a significant change in SPR resonance response in the in situ studies. Following hexane wash, no significant decrease in SPR signal was observed for the ibuprofen-loaded MIL-88B film. This confirmed ibuprofen was encapsulated inside of MIL-88B cages not being adsorbed on the outer surface.

REFERENCES

- 1. Novel Route to Size-Controlled Fe-MIL-88B-NH2 Metal-**Organic Framework Nanocrystals**
 - Minh-Hao Pham, Gia-Thanh Vuong, Anh-Tuan Vu, and Trong-On Do. Langmuir **2011** 27 (24), 15261-15267 DOI: 10.1021/la203570h
- 2. Tuning Crystal Structures of Iron-Based Metal-Organic **Frameworks to Control Drug Delivery Applications** Pham, Hao; Ramos, Kimberly; Sua, Andy; Acuna, Jessica; Slowinska, Katarzyna; Nguyen, Trenton; Bui, Angela; Weber, Mark; Tian, Fangyuan. ACS Omega 2019, submitted

ACKNOWLEDGEMENTS

This research was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Numbers; 5UL1GM118979; 5TL4GM118980; 5RL5GM118978. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.