

Behavioral Mechanisms Involved in Oviposition Preference in *Drosophila melanogaster*

CALIFORNIA STATE UNIVERSITY LONG BEACH

Bridget Diviak, Pauline R. Blaimont, & Ashley J. R. Carter, Department of Biological Sciences

ABSTRACT:

- Drosophila oviposition choices were compared for pairs of food flavorings
- Drosophila is known to use the presence of the yeast Saccharomyces cerevisae and acetic acid as oviposition guides, food flavor preferences are largely unknown
- Hypothesized that our data will show that exposure in earlier stages of development, and even in parental larval environments, may modify *Drosophila* food preferences

INTRODUCTION:

- In generalist insect species, like *Drosophila melanogaster*, progeny survival and fitness are reliant on suitable oviposition sites
- Mechanisms regulating how environmental factors and innate choice preferences are integrated and balanced remain unknown
- As seen in the apple maggot fly Rhagoletis pomonella, exposure to more than one suitable host may give rise to subgroups exhibiting different traits
- This divergence of personal preference may lead to speciation

METHODS:

- All natural apple and banana extracts from Olive Nation were used
- Control media lacked additional food flavoring and was only given only to the F1 generation
- 1 mL of extract per 200 mL of standard food made from scratch (corn syrup, yeast, corn meal, agar and anti-fungal) was the standard concentration when extract was used
- The flies were kept in an incubator with
 12 hour light and dark cycles
- Virgins used at every mating and given 3 days to mate before being removed
- Flies were counted at day 8 and 10 after removing mating pairs, number of offspring from F2 flies in each vial was taken as choice preference

CONCLUSION:

- Females with grandparents raised on apple food chose to lay their eggs in apple food more than the flies with grandparents raised on banana food
- Epigenetic modifications in behavior are heritable, which suggests that behavioral experience in adult life may influence gene expression in subsequent generations

FUTURE WORK:

 More trials using genetically monomorphic population are needed to confirm the pattern seen

REFERENCES:

Ebbs, M.L., Amrein, H., (2007). Taste and pheromone perception in the fruit fly *Drosophila melanogaster. Pfuger Arch – Eur J Physiol.* 454: 735-747. Doi: 10.1007/s00424-007-0246-y

Joseph, R.M., Devineni, A.V., King, I.F., Heberlein, U. (2009). Proceedings of the National Academy of Sciences Jul 2009, 106 (27) 11352-11357; DOI: 10.1073/pnas.0901419106.

Joshi, A. (1997). Laboratory studies of density-dependent selection: Adaptations to crowding in Drosophila melanogaster. Current Science, 72(8), 555-562. Retrieved from http://www.jstor.org/stable/24098116

ACKNOWLEDGEMENTS:

This research was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Numbers; UL1GM118979; TL4GM118980; RL5GM118978. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.