


Introduction

Definition of BUILD Students

METHODS

The Building Infrastructure Leading to Diversity (BUILD) initiative of the National Institutes of 
Health (NIH) Diversity Program Consortium, which is funded by the NIH Common Fund and 
managed by the National Institute of General Medical Sciences (NIGMS), was established to 
incentivize undergraduate institutions to create innovative approaches to increasing diversity in 
biomedical research, with the ultimate goal of diversifying the NIH-funded research enterprise. 
An evaluation of the BUILD initiative is being implemented by the Coordination and Evaluation 
Center (CEC).  

A major component of the CEC evaluation is the Enhance Diversity Study, a large-scale, 
systemic, national longitudinal evaluation of BUILD training programs (McCreath et al., 2017). 
The Enhance Diversity Study includes the systematic collection of qualitative and quantitative 
data from students and faculty to measure psychosocial factors and outcomes. Consortium-
wide data are collected at defined intervals, including participant rosters for BUILD activities, 
student and faculty survey responses, institutional records, and transcripts from CEC case 
studies.  

Adequate power for statistical analyses to estimate the impact of BUILD involvement on 
student outcomes is crucial for successfully generating recommendations for policy and 
practice. In this technical report, we report results of power calculations conducted to 
determine the smallest differences in outcomes between BUILD-exposed students and 
students not involved in BUILD that can be detected with 80% power, given the sample sizes of 
students at BUILD institutions that are expected to be available for longitudinal analysis. Power 
of 80% is a commonly used benchmark and represents a probability of 0.80 of concluding that 
an intervention effect exists, given that such an effect exists.  

For purposes of this technical report, “BUILD” student is defined as being a BUILD Scholar, a 
BUILD Associate, and/or having a BUILD program undergraduate research experience (URE). 
BUILD Scholar is program-defined. These are the most intensely treated and supported 
group of students. Scholars often receive tuition support or stipend, research training, 
and mentorship. Compulsory and structured participation in a host of BUILD activities is 
common for this group. BUILD Associate is also program defined. This term describes a less 
intensely treated and supported group of students, often participating in a subset of structured 
BUILD activities. Some programs recruit Scholars from the Associate pool. URE is reported 
by programs and includes BUILD affiliated student-directed research and/or mentored 
undergraduate research experiences, during the academic and/or summer term(s).  
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Power Calculation Approach

Effect Sizes

Factor Influencing Power

Our objective was to answer the question, given the sample sizes that are expected to be 
available for longitudinal analysis, what are the smallest effect sizes that can be detected with 
80% power and a two-sided significance level of 0.05? Since most outcomes of interest for 
BUILD students are either continuous variables (e.g., scale variables such as Science Identity) 
or dichotomous variables (e.g., persistence in a biomedical major), we sought to calculate the 
smallest detectable effect sizes for a continuous outcome and a dichotomous outcome.  

For continuous outcomes, the effect size was operationalized as the standardized mean 
difference between BUILD and non-BUILD students at follow-up. The standardized mean 
difference is a widely used effect size measure for continuous outcomes and is equal to

The following factors influence power and were part of the calculations: 

(1) Multilevel design: Data collected to evaluate the BUILD initiative are multilevel, with sites 
at the upper level and students within sites at the lower level. Our calculations were based 
on power methods for studies with multilevel designs (Moerbeek & Teerenstra, 2016). In a 
multilevel design with two levels such as BUILD, variation in an outcome variable arises due to 
variation at two levels: variation across sites and variation of participants within sites. Power 
calculations require plausible estimates of the variances at the two levels or the intraclass 
correlation coefficients that quantify the apportionment of variance between levels. Where 
possible, we obtained plausible estimates of these quantities by fitting models to data. This 
modeling is explained further below.

where SD is the standard deviation of the outcome variable. The standardized mean difference 
is in units of standard deviation. Commonly accepted benchmarks are that standardized mean 
differences of 0.2 and 0.5 represent small and medium effect sizes (Cohen 1988). 

Benchmarks for differences in proportions that represent small, medium and large effect sizes 
have been proposed (Cohen, 1988). In general, differences in proportions on the order of 0.05-
0.10 represent small effect sizes and differences on the order of 0.15-0.25 represent medium 
effect sizes. 

For the dichotomous outcomes, the effect size is the difference in proportions, 

SD

Mean BUILD  – Mean non-BUILD

PBUILD  – Pnon-BUILD
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(2)	 Sample size: number of sites (upper-level units):  There are 10 BUILD programs, with 
11 primary institutional sites for data collection. Different numbers of sites are expected 
to be available for inclusion in different analyses. Of note, institutional records data will be 
available for a limited number of students for two sites due to consent requirements at these 
institutions. At these two sites, only students who granted permission to the institution on a 
survey in 2020, 2021, or 2022 will contribute to analyses. Thus, we performed computations 
under two scenarios: 11 sites and 9 sites.
(3)	 Sample size: number of students per site (lower-level units): To obtain plausible 
estimates of the number of BUILD students per site that would be included in analyses, we 
determined that approximately 1000 BUILD students have completed a baseline survey and 
at least two follow up surveys and approximately 1500 BUILD students have completed a 
baseline survey and at least one follow-up survey. These numbers correspond to means of 91 
and 136 BUILD students per site, respectively. Numbers of students with outcomes based on 
institutional records may be somewhat lower. We present results for a mean number of BUILD 
students per site ranging from 40 to 120, since sample sizes may vary from analysis to analysis 
due to differences in survey response rates, availability of institutional records, missingness, and 
focus on subgroups
(4)	 Heterogeneity of the treatment effect: In a multilevel design in which there are both 
intervention-exposed individuals and comparison individuals at each site, the intervention effect 
may vary from site to site. This is referred to as heterogeneity of the treatment effect and 
tends to reduce power (Moerbeek and Teerenstra, 2016). Our calculations allow for plausible 
levels of heterogeneity of the treatment effect. Where possible, we obtained estimates of 
the between-site variance of the treatment effect or the corresponding intraclass correlation 
coefficient by fitting statistical models to BUILD study data. This modeling is explained further 
below.
(5)	 Variability in sample size per site: In the BUILD initiative, the number of students varies 
from site to site. Variation in the number of observations per site in a multilevel study tends 
to reduce power. We discounted the sample sizes by 5% to account for this loss of power, 
based on literature indicating that the impact of varying cluster/site sizes rarely exceeds a 10% 
efficiency loss (van Breukelen et al, 2007).
(6)	 Ratio of BUILD to non-BUILD students at each site: At most BUILD sites, the number 
of non-BUILD students who could be considered a comparator group for BUILD students 
(i.e., biomedical science majors), is much larger than the number of BUILD students. However, 
available power methods for multisite studies assume equal numbers of intervention and 
control participants per site. Therefore our calculations are restricted to assuming equal 
numbers of BUILD and non-BUILD students per site. This assumption is conservative in that it 
entails an underestimation of the actual sample size that is available.
(7)	 Impact of confounding: Standard power calculation methods are for randomized trials. 
Since the BUILD initiative is not a randomized trial, calculations assuming randomization will 
tend to be overestimate the power of the study. Adjusting for patterns of confounding in 
sample size/power calculations for observational or quasi-experimental studies is extremely 
challenging, both technically and scientifically. Some studies have shown that naïve methods of 
sample size calculation can underestimate the required sample size by as much as half (Haneuse 
et al. 2012). As an adjustment for the impact of confounding, we discounted the sample sizes by 
20%.
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Variance Parameter Estimates

To conduct power calculations for a study with a multilevel design such as the BUILD initiative, 
it is necessary to have estimates of variance parameters. Where possible, we fit models to 
data to obtain plausible estimate of the necessary parameters. The necessary parameters 
and the statistical procedures to estimate them are somewhat different for continuous and 
dichotomous outcomes. We explain the procedures for each. 

Continuous outcomes. For continuous outcomes, there were three relevant variance 
parameters: the variance of site-level means, the variance of the intervention effect across sites 
(relevant to heterogeneity of the treatment effect), and the residual variance at the individual 
level. To obtain estimates of these parameters, we fit models using two illustrative outcomes: 
science self-efficacy and science identity. These variables are collected on student surveys and 
are scored using item response theory. Linear mixed models were fit to data from students 
who completed a baseline survey and at least one follow-up survey and were biomedical 
science majors at the last survey. The dependent variable was the outcome at follow-up. 
Models included an indicator for BUILD exposure, controlled for the outcome variable at the 
baseline (first) survey, and included a random intercept for site and a random effect for the 
BUILD effect (by site).  

After obtaining the variance parameter estimates from the models, we then used them to 
calculate intraclass correlation coefficients (ICCs). ICCs are quantities for multilevel data that 
characterize how the variance of the outcome is apportioned between the upper (site) level 
and the lower (student) level. It is the ICC estimates that are used in the power calculations. 
The two relevant ICCs are ICC0, which is the proportion of the variance that is due to 
variation of mean outcomes across sites, and ICC1, which is the proportion of the variance that 
is due to heterogeneity of the treatment effect across sites. 

Estimates of the ICCs obtained from fitting models to data are presented in Table 1. ICC0 
quantifies the proportion of the total variance of an outcome that is attributable to variation 
of site-level means, and as it increases, power increases. ICC1 quantifies the proportion of the 
total variance of an outcome that is attributable to variation of the treatment effect across 
sites, and as it increases, power is reduced. The impact of ICC1 tends to be larger than that 
of ICC0. Raudenbush and Liu (2000) have proposed 0.05, 0.10, and 0.15 as small, medium, and 
large values of ICC1. Thus the ICC values in Table 1 can be considered very small. This implies 
that the multilevel nature of the BUILD data has a relatively small impact on power. 
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Table 1. Intraclass correlation coefficient estimates for continuous outcomes obtained by 
fitting models to longitudinal data from the BUILD initiative

For purposes of calculating the smallest detectable effect size, we assumed an ICC0 of 0.006 
(obtained by rounding the lower value down) and an ICC1 of 0.01 (obtained by rounding the 
higher value up).

Dichotomous outcomes. For dichotomous outcomes, we will be comparing outcome 
proportions between BUILD and non-BUILD comparison students. A statistical feature of 
proportions is that the variance of an estimated proportion depends on the value of the 
proportion. Proportions near 0.5 have the highest variance and proportions close to 0 or 
1 have the lowest variance. Thus, power is the lowest when trying to detect differences in 
proportions when the proportions are near 0.5 and highest when the proportions are near 0 
or 1.

In order to conduct power calculations, it is necessary to specify the values of the proportions 
in each group, rather than just the difference in proportions. We selected an outcome 
proportion of 0.75 for the comparison group and assumed that the proportion would be higher 
in the BUILD group; the smallest difference in proportions that could be detected was the 
minimal detectable effect size. The choice of 0.75 was based on data showing that persistence 
in biomedical majors was about 0.75 among incoming biomedical majors not exposed to 
BUILD. This proportion also reflects a somewhat but not overly conservative choice.
For dichotomous outcomes for the evaluation, the data will be modeled using multilevel logistic 
regression models. In these models, the effect of BUILD is estimated as a log odds ratio, and 
the variance parameters are also on the log odds scale. There were two variance parameters: 
the variance of the log odds of the outcome across sites, and the variance of the intervention 
effect across sites (due to treatment effect heterogeneity). An estimate of the variance of 
the log odds of the outcome across sites can be obtained based on the specified outcome 
proportions in each group. While it is theoretically possible to obtain an estimate of the 
variance of the intervention effect across sites by fitting models to data, currently available data 
on persistence did not provide a reliable estimate of this parameter due to sparseness of data 
from some sites. Therefore we selected a plausible value for the variance of the intervention 
effect across sites using the approach suggested by Moerbeek and Teerenstra (2016, page 
127). This approach involves selecting a value for the variance that will yield a plausible interval 
within which we might expect 95% of the site-level intervention effects to lie. This value was 
determined to be 0.05.

Science 
Self-Efficacy

0.0063ICC0: proportion of the variance that is due to variation of 
mean outcomes across sites

ICC1: proportion of the variance that is due to 
heterogeneity of the treatment effect across sites

0.0088

Science 
Identity

0.0079

0.0099
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120

120

0.27

0.31

0.086

0.095

100

100

0.28

0.32

0.09

0.10

80

80

0.30

0.34

0.10

0.11

60

60

0.33

0.38

0.11

0.13

40

40

0.39

0.44

0.14

0.15

RESULTS
The smallest effect sizes that can be detected with 80% power, based on the assumptions and 
procedures described in the Methods section, are presented in Tables 2 and 3. Results are 
shown for a range of mean number of BUILD students per site. Table 2 is applicable to analyses 
that include all 11 primary institutional sites and Table 3 applies to analyses including only nine 
sites. Many analyses utilizing student survey responses are expected to include all 11 sites, 
whereas analyses that rely on the availability of institutional records may be limited to nine sites 
in some instances.

The results show that, when conducting longitudinal analyses that involve a mean of 100-120 
BUILD students per site, we will have power of at least 80% to detect effect sizes in the small 
range. As mentioned in the Methods, about 1000 BUILD students, or about 91 per site, have 
completed a baseline survey and at least two follow up surveys, and about 1500 BUILD students, 
or about 136 per site, have completed a baseline survey and at least one follow-up survey. Thus, 
these estimates of detectable effect sizes for the case of 100-120 BUILD students per site can be 
considered applicable to many consortium-wide analyses.

The tables show that, as the mean number of BUILD students per site in the analysis decreases, 
the smallest effect sizes that can be detected with 80% power increase. In general, these effect 
sizes are in the small-to-medium range. Smaller numbers of BUILD students per site may be 
available for some analyses due to missing data or because the analyses focus on subgroups.

Table 2. Smallest effect sizes detectable with 80% power: analyses including 11 sites

Table 3. Smallest effect sizes detectable with 80% power: analyses including 9 sites

Mean number of BUILD 
students per site

Mean number of BUILD 
students per site

Continuous outcome: 
standardized mean difference

Continuous outcome: 
standardized mean difference

Dichotomous outcome: 
difference in proportions

Dichotomous outcome: 
difference in proportions
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DISCUSSION
The goal of the analyses presented in this technical report was to determine the smallest 
differences in outcomes between BUILD-exposed and non-BUILD students that are detectable 
with 80% power, given the sample sizes that are expected to be available for longitudinal 
analysis. It is important to have adequate power to detect meaningful differences between 
groups, since inadequate power can lead to important effects going undetected and the 
erroneous conclusion that a program or intervention was not effective.

We found that longitudinal analyses using consortium-wide data should have adequate power to 
detect small effect sizes, on the order of a standardized mean difference of 0.3 for continuous 
outcomes and a difference of proportions on the order of 0.09-0.10. Such differences are 
meaningful and are consistent with effects that we have been detecting in analyses. Our 
calculations involving smaller numbers of BUILD students per site, e.g., 40-60 per site, may 
be considered relevant to subgroup analyses that are restricted to individuals with certain 
characteristics. For such analyses, we have adequate power to detect small-to-medium effect 
sizes, on the order of 0.35-0.40 for standardized mean differences and 0.11-0.15 for differences 
in proportions. However, the calculations here do not consider power for analyses that 
compare outcomes across different subgroups.

The calculations in this report have limitations. Conducting power calculations involves 
making assumptions about the values of various parameters. We attempted to make plausible 
assumptions about the values of parameters based on currently available information. In 
general, we made assumptions that were somewhat conservative. We were also limited by 
the power calculation techniques that are currently available. Our calculations were based on 
power methods designed for randomized trials with multilevel data that have equal numbers of 
“treated” and “untreated” participants at each site. Therefore, our calculations do not account 
for the fact that many analyses are likely to include larger numbers of non-BUILD students, 
rather than equal numbers of BUILD and non-BUILD students. The assumption of equal 
numbers is conservative in that it is an underestimation of the actual sample size. Overall, due 
to the mostly conservative assumptions, the minimum detectable effect sizes presented here 
should be considered high; it is likely that we will have adequate power to detect smaller effect 
sizes.

Challenges and efforts to sustain engagement with the nationwide longitudinal study have 
been well described. Analyses are underway to better understand sample representativeness 
and the potential bias of non-response. Nonresponse bias may occur when respondents to a 
survey differ from non-respondents. This issue is the focus of separate analyses comparing the 
EDS sample to the Integrated Postsecondary Education Data System (IPEDS) data for these 
institutions. Findings from these analyses will be made available in a forthcoming technical 
report.
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